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Presentation Outline

°* Preliminary System Benefits Quantified &
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* “Go/No-Go” Technical Feasibility Established
* System Modeling Tools for EBS have been
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°* Conclusions and Next Steps

Presentation includes gasoline and diesel engine data and analysis
It also includes e-Charger and e-Turbo results
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e-Turbo™: Electrically-Assisted Turbocharger

Three Levels of
| O | System Benefits
Electronic e Performance - Eliminate
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) @ Exhaust  Aggressive Engine
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M/G - Supplier Developed 12 V DC Input 2 kW Induction Motor/Generator
Controller - Supplier Developed
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Problem Statement for EBS

Larger normally aspirated engine
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Performance Benefits — Transient Torque
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Example of Benefits - Engine Test Results
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Diesel Engine Turbocharging & Downsizing

Effect of Downsizing on Fuel Consumption
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Gasoline Engine Downsizing & Turbocharging
Fuel Economy MY 1992-93

14 .« Units litres/100 km - lower is better
g  Turbocharged downsized engines show 8-10%
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o 117 engines over 10 years of production vehicles
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Critical “Go/No-Go” Technical Feasibility Criteria

e High-speed motor/controller system to provide up to
1.4kW mechanical power at speeds up to 1/5kRPM
total system efficiency > 70%.

e Turbocharger bearing system to carry the extra
mass and length while still retaining acceptable shatft
rotor-dynamic behavior up to 225kRPM.

e Turbocharger and motor cooling system to protect
the motor from the extreme turbocharger thermal
environment as well as from self-heating.

e Compressor aerodynamics to deliver the extra boost
without suffering from surge (“stall”) during the
transient.

Designs Successfully Establish Feasibility
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Modeling for EBS

Modeling tools

— T~

EBS system analysis, EBS control
specification and strategies
optimization development

EBS matching for
specific customer
application
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EBS System Analysis

High level to low level specification

System
performance target
(customer input)

J

System |:‘> Subsystems
model specification

e.g. electric motor
torque curve

Component Component
model I:> specification

e.g. motor model e.g. winding spec.,
rotor spec., ...
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System Model Schematic

Engine Turbocharged
Management » Actuators > engine » Vehicle
System + EBS
A
Sensors <

Engine mean value model (diesel and gasoline)

« Thermodynamics/mechanical model of turbocharged engine

» Validated against steady state and transient engine data
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System Model: Matlab/Simulink Implementation

ECHARGER MATCHING D T -_,D_,
(WASTE GATE) engine speed [RPM] MAP kP a]
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(O—» Speed fmh]
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Correction
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Summary of Main Modeling Assumptions

Actuator dynamic: 7=70ms

Air Charge Throttle
Filter Air Cooler (if applicable)
4 A
Fixed outlet temperature
during transient T,,. = 35°C
: (thermal inertia)
T, =20°C
« BSFC, volumetric, thermal
P.mp=1000 mbar and indicated efficiencies kept
to steady state full load values Engine
* No knock effect considered
A
Exhaust

line Turbine

 Efficiency correction for
pulse effect (WG turbine)

e Actuator dynamic: 7=70 ms
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Summary of Main Modeling Assumptions

During transient simulation:
Goal: Reach & Maintain Boost Pressure Set Value

 Throttle (if applicable) Control:

Fast opening at PPS step (instantaneous 100 % DC command)

e WG/VNT Control:

Open at part load (0% DC command)
Fast closing at PPS step (instantaneous 100 % DC command)
Kept closed if electric motor activated, regulation mode

afterward

e Electric Motor Control:
Fast starting at PPS step (instantaneous 100 % DC command)
Regulation mode afterward

 Boost Pressure Set Value:
If EBS is activated, desired boost pressure set to maximum full

load boost
PPS-Pedal Position Sensor

WG for Gasoline and VNT for Diesel
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Summary of Main Modeling Assumptions

Boost pressure set value with EBS
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Steady-State Model Validation
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Boost Pressure [kPa]

Engine Speed [RPM]

Transient Model Validation

» 1600 kg vehicle - 2.0L gasoline engine (e-Turbo OFF)

» Acceleration in 4th gear from 1000 RPM — model
— engine data
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Transient Model Validation

» 1600 kg vehicle - 2.0L engine (e-Turbo ON)

 Acceleration in 4th gear from 1000 RPM — model

— engine data
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Transient Model Validation

1600 kg vehicle - 2.0L gasoline engine
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Transient Model Validation

) 1600 kg vehicle - 2.0L gasoline engine
(e-Turbo OFF) e Acceleration in 4t gear from 1000 RPM
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Sensitivity Analysis Example: Displacement

A

 Fixed RPM ramp after load step (400 engine RPM/S) gngine || Load step
* Electric motor mechanical power: 1250 W RPM i
* Relative value compared to transient w/o EBS

* Diesel Engine Modeling - % increase in torque in ~ 1 sec >
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Sensitivity Analysis Example: Power

* Fixed RPM ramp after load step (400 engine RPM/s)
* Relative value compared to transient w/o EBS
* Diesel Engine Modeling - % increase in torque in ~ 1 sec

Transient torque increase over “no-EBS value” @ 1500 RPM
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Key Technical Challenges and Targets (2.0L)

* Maintain baseline turbocharger speed = 225kRPM

— Challenge for rotor bearing subsystem to carry motor
+ Extralength of shaft
¢+ Overhung weight of motor

— Challenge for motor mechanical stress
¢ Durability at high speed
* Motor performance
— Acceptable performance on 12V network and < 2kW electric input
+ Torque and mechanical power necessary for boost benefit
+ Efficiency to minimize electric input power requirement
* Compressor aerodynamics to deliver full benefits of motor boost
— Good efficiency at low flow, low pressure ratio
— Good range to avoid surge during overboost

* Temperature capability and cooling: motor < 180C

* Protection of motor at severe “off” conditions (e.g. soakback)
— Unconstrained duty cycle operation at typical operating conditions
— Partial duty cycle operation at worst-case operating conditions
¢ 850C turbine inlet

¢ 110C cooling water
¢ 150C oil temperature

Gal'l'etl Honeywell



Presentation Outline

* Preliminary System Benefits Quantified &

Configuration ldentified

* “Go/No-Go” Technical Feasibility Established
* System Modeling Tools for EBS have been

Developed

* Sensitivity Analysis has been Performed to Set

Development Targets

Key Technical Targets and Challenges have been
Defined

—easible Technical Solutions have been Identified

* Conclusions and Next Steps

Gal'l‘etl Honeywell



Solutions Require Integrated Approach

e-Turbo Design Parameters
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Rotor Bearing Subsystem

* 5 Bearing systems defined

* Downselection to 3 systems for testing

» 3 systems successfully testing:
* 2 journal bearing (Z bearing)
* 1 ball bearing

= ==Synchronous Limit

Total Motion Limit

- -+ - SYN EAT

—=—TOTAL EAT

- =A- =SYN e-Turbo scaled Zbearing
—a——TOTAL e-Turbo scaled Z bearing
SYN e-Turbo Ball Bearing
TOTAL e-Turbo Ball Bearing

Shaft Motion

Current e-Turbo
design stable above
target speed

Earlier design
stability issue

-
\“‘n ....
*

Turbocharger Speed
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Cooling Subsystem

Vehicle Duty-Cycle Recording @ Several Conditions _ Mountaim Route
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- Average ON time (sec) 1.1 2.2 1.5 1.3
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® 140 L Cooling
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e-Turbo Bench Test

70 and Model Validation at
Good Temperature Margin at Normal Conditions Mountain Duty Cycle

Conditions

Temperature (°C)
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Conclusions and Next Steps

Conclusions

* System models have been developed, validated, and used
to set development targets

* Testing and simulation has validated the potential for
engine downsizing using EBS
* Key technical challenges have been identified and

solutions have been found: rotor bearing subsystem,
cooling system, motor, aerodynamics

* Next Steps

* Develop next-generation prototype encompassing latest
technical solutions and performance targets

* Perform engine and vehicle testing to validate
performance and downsizing potential

* Assess total installed system cost and packaging
* Scale up to SUV Size Engine
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